Fold, a Dynamic Linker
framework written in Rust

Master research project
by

Ludovic Mermod
Noé Terrier

Abstract

Fold is a framework to create Rust-based (dynamic) linkers, offering simple tools to
design and implement new linkers. It provides a default modularized System V ABI
linker, on top of which one can add incremental augments for custom purposes.

Instructor: Prof. Edouard Bugnion

Teaching Assistants: Charly Castes

Laboratory: Data Center Systems Lab at EPFL

Date: Spring semester 2025

Faculty: School of Computer and Communication Sciences, EPFL

=Pr-L

Ludovic Mermod & Noé Terrier

Contents
A S aCT .. 1
A 0 T () o 2
2 Backgroundoooiiiiiii 2
2. ELF oo 2
2.1.1 ELF headero e 3
2.1.2 SegMENTSo 3
2 S T T4 1 1o) s U 3
2.2 System V ABI ... e 4
2.3 Linker Workflowoooii e 4
3 FOld DeSigN ..ot 5
3.1 Manifold 5
3.2 Target SEleCtionuuu ittt 6
4 System V Chain 6
4.1 CRAIN OVEIVIEW ..ottt et et ettt e e e e e e e et e e et e 6
4.2 COlleCtOr . .. 7
4.3 LOoader ..o 8
4.4 Thread local STOTAZEttt 8
4.5 RelOCAtiONo e 9
4.5.1 Jump slot relocation 10
O S o0 (o) 111 10
AN - Y o 1 10
5 CASE STUAY ettt 10
5.1 Syscall fIlteringoooiiiiii i 10
5.2 Inter-module communicationooiiiiiiiiiiiiie i e 12
5.3 Function hooKso 14
6 State of the Projectooviiiiii i 15
7 FULUIE WOTK ... o e e 16
B R I EIICES .. o\t 16

Ludovic Mermod & Noé Terrier

1 Motivation

When looking at the System landscape, it is clear that research is far ahead of actual imple-
mentations, as incorporating new technologies require to either merge them into the Linux
Kernel or write a whole new OS. Both are very time-consuming and while the latter is more
likely to succeed, it would most probably never get actually done due to the time it would take
and the constraints for adding new features to Linux.

“Systems Software Research is Irrelevant”
— Rob Pike[1]

An interesting observation we can make on the design of Linux is that all processes, up to
init itself, are launched by the system’s dynamic loader[2]. This could be taken advantage of
as changing the dynamic loader would allow executing user-defined code at the start of all
processes. Furthermore, an ELF binary can specify the path of its loader, allowing it to pick
an appropriate loader.

However, existing loaders like GNU’s or Musl’s are very complex pieces of code, intertwined
with their respective standard library, making them hard to tweak. For example, when
launching a process with GNU’s loader, it first starts by linking itself with libc, and vice-
versa as they both depend on each other, before finally linking the actual executable.

Based on these observations, we present Fold, a framework to easily create new dynamic
linkers. It provides a basic linker implementation for usual executables and an API to add
customized operations, similarly to LLVM’s compiler framework[3].

2 Background
2.1 ELF

Before diving into Fold’s inner working, let’s first take a quick look at what an executable file
looks like. ELF — Executable and Linkable Format — [4] is the format used for all executable files
in a Linux environments. It is divided into four main parts: ELF header, program header table
(PHT), content and section header table (SHT). The content itself is composed of segments
and section, each having some extra metadata in, respectively, the program header table and
the section header table. As depicted in Figure 1, it is important to note that segments and
sections are two different “views” of the same content; a segment can overlap with a section
and vice versa, but a segment cannot overlap with other segments. Segment carry information
on the mapping of the ELF content in the virtual space and its protection, where section carry
information on what the content is and how to interpret it (code, string table, plt...).

ELF Header

Program header table

Ludovic Mermod & Noé Terrier

Information on how
to load segments

Section #1 { text

Segment #1 (R — E)
Section #2 { .-rodata
Section #3 { .data

Segment #2 (RW —)

Information on how -
Section header table

to interpret sections

Figure 1: ELF File Structure

2.1.1 ELF header

The ELF header contains a few entries characterizing the file, starting with 16 magic bytes
to identify the file as an ELF, position of the headers in the file, their size, the ABI used, etc.
Interestingly, the version number has stayed at 1 for 50 years, although many variations have
been designed and used (while staying compatible with older linkers).

2.1.2 Segments

The segments of the file contain data about how it should be executed, like the code, text
and data segments, as well as the path of the interpreter (dynamic linker) to use. The most
interesting segments in that project are those of the LOAD type, meaning that they need to be
copied in to the process’ address space. Their entry in the PHT also indicates the protection
flags that need to be put on that segment (R for .text, RE for code, etc.) and the size of the
segment in memory, which may differ from the size in the file if the segment ends with a
sequence of zeros — in which case the dynamic linker needs to initialize the extra memory.

2.1.3 Sections

The sections describe how the file should be linked. Each entry in the table contains, among
other things, a type, a name (or rather an index into a string table, see below), and a linked
section.

The most important sections are the relocation sections (. rela.*), symbol tables and string

tables:

« String tables (ST) contain all the string used in the file, for example for symbol names.
The strings are stored as null-terminated sequences in the file. When a section references a
string, it will actually hold the position of the string relative to the start of the ST section
containing the string. The ST section itself can be easily identified as it is the one linked in
the SHT.

« Symbol tables store the location of all symbols of the file. Symbols are used to identify
functions, variable, and so on, when linking with dynamic libraries.

+ Relocations tell the linker how to rewrite the executable’s code such that it can interact with
dynamically loaded libraries. More detail on this in Section 4.5.

Ludovic Mermod & Noé Terrier

2.2 System V ABI
OSDev wiki gives the following definition for System V ABI:

“The System V Application Binary Interface is a set of specifications that detail calling
conventions, object file formats, executable file formats, dynamic linking semantics, and
much more for systems that complies with the X/Open Common Application Environ-
ment Specification and the System V Interface Definition. It is today the standard ABI
used by the major Unix operating systems such as Linux, the BSD systems, and many
others. The Executable and Linkable Format (ELF) is part of the System V ABI”

— OSDev Wiki[5]

The design discussed later in Section 3 provides, among other things, a functional implemen-
tation of a loader that follow the System V ABIL

2.3 Linker workflow

A dynamic linker is a program able to transform an ELF file into an actual process. On
execution request for an ELF file, the kernel open the file and looks for the path of the
interpreter — the dynamic linker — required by the ELF inside the . interp section. It creates the
process for the future executable, loads the dynamic linker into it and jumps to its entrypoint.
The dynamic linker will identify the ELF file to load from the argv, open it, then parse it to
retrieves loading and linking information. Finally, it will proceed to all the operations required
by System V ABI in order to prepare the executable and pass the control flow to entrypoint.

. Dynamic | ! : :
execve("bin/1s") /bin/1s Linker .| Loading segments |
€ ' T 1

ELF file ELF Header E -]

of /bin/1s ! :
.Anterp: "ld.so" E Relocations :

Section header table E Jump to entrypoint E

Figure 2: Flow of process creation

Ludovic Mermod & Noé Terrier

3 Fold Design

The idea behind Fold’s design is similar to assembly lines: an object called the “manifold” is
passed to several successive “modules”, each of which modifies the manifold and/or the virtual
space. Modules can communicate with each other though the manifold.

Manifold Module chain I custom API to
ELF Objects Collect ! insert / modify modules
L |
Sections — Load |
- I <= Custom module

Segments Protect i
I 1
Shared memory Start |

Figure 3: Fold structure

3.1 Manifold

The manifold structure shown in Code snippet 1 contains arrays of ELF objects, sections and
segments, as well as a ShareMap. The latter is a structure able to store any datatype and is used
to implement inter-module communication: a module can insert data into the map that can
then be fetched and used by the following modules.

pub struct Manifold {
pub objects: Arena<Object>,
pub sections: Arena<Section>,
pub segments: Arena<Segment>,
pub shared: ShareMap,
pub env: Env,

}
Code snippet 1: Manifold structure

For example, let’s take a look at the first steps of the default System V module chain (Figure 4).
First, the manifold is initialized with the ELF file of the binary to load. It then goes through
the first module, which computes and loads the dependencies of the executable recursively,
yielding a manifold with the initial ELF file plus all the dependencies ELFs, as well as an entry
in the ShareMap containing the list of their paths. This is then passed over to the Load module
which sets up the address space and load all the segments, from both the initial file and the
dependencies at their respective addresses. It continues until the linker reaches the Start
module which jumps to the exectuable’s entry point and thus never return. Note that the
linker does not know that the Start module is the end of the chain; this is only a consequence
of the work of the module itself.

Ludovic Mermod & Noé Terrier

Loaded segments
Loaded segments ELF deps
ELF deps ELF file
ELF file

ELF deps
ELF file

ELF file

Figure 4: System V chain

3.2 Target selection

Modules can be applied to either the Manifold, objects, sections or segments. When registering
a module in the chain, a filter can be added to specify which type of element it should match,
as well as some more fine-grained selection to choose which specific elements to apply to. For
example, in the chain above, Start would be applied the whole Manifold while Load would
be invoked on all segments with the PT_LOAD tag.

When creating the chain of modules, filters are dissociated from the modules that they are
applied to, allowing to compose modules more freely. For example if one wanted to modify
how relocations are processed for the initial executable file but not its dependencies, they
could register the usual relocation module with a filter excluding the executable object and a
custom module only invoked on it.

4 System V Chain

We will now go through the implementation of the modules interacting with System V ABI[6]
shown in Figure 4. These modules allow the default chain to link and execute various samples,
from statically linked “Hello world!” up to a reduced yet fully functional build of SQLite.

As mentioned above, GNU'’s standard library is deeply intertwined with their linker, thus we
moved away from this implementation and instead used Musl[7]‘s standard library. It is much
more simple and lightweight, thus making it way easier to interact with. We also slightly
modified it such that it accepts being loaded by Fold instead of its own linker and added a few
interface functions for compatibility with executables compiled with gcc.

We would also like to thank fasterthanlime and their incredible blog post “Making our own
executable packer”[8], without which we could not have achieved such results.

4.1 Chain overview

Figure 5 shows the full default chain of System V modules, which is the one used in Fold’s de-
fault build. As a first observation on the choices for Fold’s design, the split into modules yields
six modules with clearly defined tasks which need to communicate few data one to another
through the manifold’s shared memory. Some modules such as the collector (Section 4.2) can
also leverage filters and shared memory to simplify their workflow by letting Fold call them
multiple times and passing data from one invocation to another.

Precise filters can be assigned to most of the modules, simplifying the work done by the
module itself. It is important to note that the filter for thread-local storage may be improved
when implementing the complete behavior for this module (see Section 7).

Ludovic Mermod & Noé Terrier

SystemV Chain Filters
Manifold Collector Section SH_DYNAMIC
ELF Objects Loader Segment PT_LOAD
Sections Thread-local storage Manifold
Segments Relocation Manifold
Shared memory Protect Segment PT_LOAD
Start Manifold

Figure 5: Default System V module chain

4.2 Collector

The first step in order to start the execution is to compute and load in memory all the
dependencies of the ELF file. This can be achieved by iterating over the sections with the
tag SHT_DYNAMIC, which contains record entries with a tag and a value. The tag DT _NEEDED
indicates that the value it is attached to is a path to one of the ELF objects this file depends
on; thus, filtering all the entries with that tag will yield all the file’s dependencies.

Since the dependencies of the target ELF file can have their own dependencies, they need to be
computed recursively while taking care to de-duplicate them. This can be easily achieved with
the structure of the module: the collector is invoked once on the target ELF object and adds the
direct dependencies to the manifold. Then, it will be invoked again on all the newly added ELF
objects, resulting in a breadth-first iteration over the dependencies. To avoid duplicates, the
module also stores in the manifold’s shared structure a list of all the files it has already loaded,
and subsequent invocations check that the dependencies they identified are not present in
that list, then update it.

The last matter to take care of is the one of the differences between GNU’s standard library
and Musl’s one. While GNU uses several object files for the standard C library (libc.so.6),
the math library (libm.so) and so on, Musl puts all of them into a single libc. so file. This is
handled by having the collector silently remaps all of 1ibc.so.6 to libc.so and drops all the
dependencies that are bundled in the latter.

As said in Section 4.1, the iteration of sections can be simplified by using Fold. The framework
will call the module on each element that matches the filter even if they were added after
the start of the iteration. This means that the module can be registered with a filter for
SHT DYNAMIC sections, load the respective ELF files and update a set of the dependencies loaded
in order to avoid duplicates.

Ludovic Mermod & Noé Terrier

4.3 Loader

Now that all the ELF objects are known, the linker needs to move on to the second step: setting
up and populating the address space. As explained in Section 2.1.2, each object comes with a
set of segment to be placed in the address space, indicated with the PT_LOAD tag in the program
header table.

Each of these segments’ entries features four important values: their physical address and size,
and virtual equivalent. The physical address indicates where the segment is stored in the file
(i.e. address relative to where the file is in memory), while the virtual address dictates where
the segment needs to be stored for successful execution.

We must now distinguish two cases, depending on whether the object is dynamically linked
or not. If it is, then the first segment to be loaded will ask for the address 0x0, and the loader
will substitute it for a random address (in our case, simply the address returned by mmap), and
add this base address as a base offset to all the other segments loaded for this object. This is
not needed for statically linked objects, as the virtual addresses of their segments is the exact
location where they need to be placed — thus allocated with the MAP_FIXED flag.

One issue that may arise is that mmap () requires addresses and sizes aligned with the page size,
which may not be the case for the addresses and sizes of the segments. To circumvent this,
the module first computes the total size that the object will use in memory;, i.e. the maximum
value of virtual address plus virtual size, and call mmap () only once.

The physical size indicates the size of the segment in the file and not the size it will have in
memory; the virtual size may be larger if the segments ends in zeros. In that case, after copying
the segment, the module will initialize the differences with zeros.

Note that for now, the loaded segments are all mapped with read & write permission bits,
necessary for the next modules. They will be updated with the actual permissions bits from the
program header table later on, when all the modifications on the code will have been applied
(Section 4.6).

4.4 Thread local storage

The thread-local storage is a part of memory referenced by the fs register and containing
data related to the current thread, such as the thread control block (TCB) and some other data
defined in the ELF. The specification of thread-local storage for ELF files[9] gives the following
schema for the memory layout of TLS:

Ludovic Mermod & Noé Terrier

r!.s:g..r‘}h‘r.r; soffser, isoffser, I TL3 Blocks for
- “ I

* * * * TCR Dynamically—loaded modules
NN\
R R —

!
|

l l l l l |

oen dmne drv dr div drv
P

rd r2 r3 r4 L5

dtv

Figure 6: Thread-local storage memory layout (TLS specification[9], page 6)

The block including the TCB can simply be mmapped after computing the list of offsets to
store and then must be initialized with the said offsets and the TCB struct[10]. As of now, the
handling of the dynamic thread vector (dtv) and dynamic modules are not implemented in
Fold as they are not required for the sample programs that were targeted, but a more complete
implementation would require this to be completed (Section 7).

4.5 Relocation

A relocation is a modification of the content of loaded segments planned during compilation
and resolved at link time, as it requires additional information like data from dependencies or
even results of code execution. There is a large variety of relocation types, each with its own
computation. They are mainly used to update calls to external library functions such that
they hold the correct address of the function to jump to.

The relocation module processes sections with the tag SHT RELA, each section containing an
array of relocations. The order in which these entries must be handled is quite specific; it
must be done in the order in which they appear in the object files but the objects must be
processed in reverse order, meaning that objects loaded last (i.e. with no dependencies) are
relocated first. The relocation entries hold an offset, a type and an extra value (also called
addend). Depending on the type of the relocation, the operation to execute is different.

Here are some examples for x86 systems[6]:

Name Value Calculation

R X86 64 64 1 S+A

R X86 64 JUMP SLOT 7 S

R X86 64 RELATIVE 8 B+A

R X86 64 IRELATIVE 37 indirect (B + A)

S is the value of the symbol found inside the symbol table. It can be found in the linked
symbol section and the index of the symbol is stored in the 32 MSBs of the addend.
A is the addend from the symbol entry.

B the base address of the object computed in Section 4.3.

indirect(X) means that the resulting value is obtained by calling the code pointed by X.

Ludovic Mermod & Noé Terrier

Resolving the address of a symbol is a bit cumbersome. Symbols are accompanied by a bind
value, which is either LOCAL, GLOBAL or WEAK. When searching for a given symbol, the linker
must first look for LOCAL symbol present in the object for which the symbol is resolved, then
GLOBAL symbols accross all objects and finally WEAK ones.

4.5.1 Jump slot relocation

While the JUMP_SLOT relocation may seem simple, its actual behavior is actually quite complex
as it involves the procedure linkage and global offset tables (respectively PLT and GOT). In
a nutshell, the relocation should not be processed with symbol resolution during the linking
phase, but the addend should be used to relocate to the corresponding PLT entry. During
the execution, when an external function is called for the first time, the program would give
execution control back to the loader, which would resolve the symbol and update the GOT
and then jump to the function, such that subsequent call would only have to read the GOT to
jump to the correction location, without involving the loader. A more complete walk-through
of the procedure can be found in section 5.2 of the ABI specification[6].

However, this behavior creates security issues, as the GOT, storing the addresses where to
jump for external functions is writable. Modern linkers resolve the symbol at link-time and
write it in the GOT, then marking it as read-only. In our implementation, we implemented
an even simpler behavior, resolving all the symbols directly at the call site rather than in the
GOT, completely bypassing the PLT and GOT. This choice was due mainly to time constraints,
and needs to be addressed in future versions of the project (Section 7).

4.6 Protect

Once all the modifications on the segments’ content are done, the linker must update the
permission bits of the different segments to match those specified by each entry in the program
header table. This is achieved using a simple mprotect() call, redefining the permissions of
the segments one by one. Note that those permissions can only be set once the relocations are
completed as they usually require modifying code, which is protected with read & execute bits.

4.7 Start

Final module of the chain. Before jumping into the main program, the stack still needs to be
set. The module constructs the stack of the executable by pushing args, env and auxv into
memory and correctly setting rsp. args, env and auxv are set by Linux and could be retrieved

from the stack at the very beginning of fold execution. Finally, it jumps to the entry point of
the ELF.

5 Case study

An interesting application of the modularized loader is that we can obviously extend the
default chain of operation to add utilities. Here follows some examples of such a modified
loader, and a demonstration of how simple it is to implement it.

5.1 Syscall filtering
From a security perspective, it could be interesting to reduce the number of syscalls a process
have access to. The seccomp syscall exactly do that! It uses a filter implemented as an eBPF

10

Ludovic Mermod & Noé Terrier

program to restrict usage of syscalls. What we can do with Fold is to call seccomp before
jumping to the entry point of our program.

To implement this, we can simply create a new Fold module, which performs a global operation
on all the manifold. It constructs the filter with predefined syscalls and installs it inside the
process with seccomp.

impl Module for Seccomp {
fn name(&self) -> &'static str {
"seccomp"

}

fn process manifold(
&mut self,
_manifold: &mut fold::Manifold,
) -> Result<(), alloc::boxed::Box<dyn core::fmt::Debug>> {
// Combine filters for write and exit
let mut filters = build seccomp filter(&[SYS WRITE, SYS EXITI]);

let mut prog = SockFprog {
len: filters.len() as ulé6,
filter: filters.as mut ptr(),
b
unsafe {
// Requiered by SECCOMP SET MODE FILTER
syscall!(Sysno::prctl, PR SET NO NEW PRIVS, 1, 0, 0, 0)
-map(|_| ())
.map_err(]|_| Box::from(SeccompError))?;

// Install the filter using seccomp syscall
syscall!(
Sysno: :seccomp,
SECCOMP_SET MODE_ FILTER,
0,
&mut prog as *mut as usize
)
map(|_| ())
.map_err(]|_| Box::from(SeccompError))

Code snippet 2: Module implementation of Seccomp

Once the module is created, we can define the entry point of our new loader, and augment
the basic System V chain with our module. It means inserting the new module before the start
module.

11

Ludovic Mermod & Noé Terrier

fn seccomp chain(fold: Fold) -> Fold {
fold.select("start")
.before()
.register("syscall restriction", Seccomp, Filter::manifold())

Code snippet 3: Main entry for seccomp-linker

Note that it is very easy to implement this directly in the linker, since it runs in the same
process as the executable. Thus, calling seccomp from the linker’s code will limit the resulting
executable, without requiring to modify another process.

5.2 Inter-module communication

We can push the previous syscall filter idea further. For example, we could scan the object to
detect the syscalls used and then restrict the process to only this set. The linker is a great place
to do such analysis as it can observe the whole executable code and used symbols.

In order to do the scan, and to illustrate communication between modules, we chooe to create
another module, at the beginning of the chain, that first collect symbols from the ELF and
produce a set of syscalls to communicate to the seccomp filter module. The latter will retrieve
it and create its filter from this.

12

Ludovic Mermod & Noé Terrier

impl Module for SysCollect {
fn name(&self) -> &'static str {
"syscall collect"

}

fn process object(
&mut self,
obj: Handle<Object>,
manifold: &mut Manifold,
) -> Result<(), Box<dyn core::fmt::Debug>> {
let obj = &manifold[obj];

let mut filter = vec![];

// Combine filters for write and exit
for symbol in obj.symbols(manifold) {
if let Ok((_sym, name)) = symbol
&& name.to string lossy().contains("puts")

{
filter.push(SYS WRITEV);
filter.push(SYS WRITE);
filter.push(SYS IOCTL);
filter.push(SYS _EXIT GROUP);
}

}
log::info! ("Identified syscall(s) needed: {filter:?}");
manifold.shared.insert (SECCOMP SYSCALL FILTER, filter);

0k(())

Code snippet 4: Module implementation for SysCollect

In this basic example, we detect only if puts is used and if so, add probably used syscall to
the set.

The module can store this new set into the manifold shared map, with its own key:

manifold.shared.insert(SECCOMP SYSCALL FILTER, filter);

The previous module, which call seccomp, can retrieve this list by accessing to the manifold
shared map:

let syscall filter = manifold
.shared
.get (SECCOMP_SYSCALL FILTER)
.unwrap or(&empty);

13

Ludovic Mermod & Noé Terrier

5.3 Function hooks

The goal of this example is to allow the injection of hooks before some of the dynamically
linked functions. To be considered successful, these hooks should be invisible both to the
program itself and to the libraries.

For each hook it wants to install, the linker creates two function, the hook itself and a
trampoline function which is used to intercept the control flow of the program, call the hook
and then resume the call to the target function. To ease the creation of the trampoline function,
it is wrapped in a procedural macro (see Code snippet 5)

fn #trampoline ident() {
unsafe {
::core::arch::asm!(
// Save the resolved address of the symbol in the stack. The actual
// value writtenmust be changed by the linker.
"mov rax,{}",
"mov [rsp],rax",
// Stores all the registers potentially containing arguments on the
// stack. All other temporary registers are not used across the call
// by the trampoline and thus do not need to be saved.
"push rcx",
"push rdx",
"push rsi",
"push rdi",
"push r8",
"push r9",
// Call the hook
"call {}",
// Pops the arguments back into the corresponding registers.
"pop r9",
“pop r8",
pop rdi",
"pop rsi",
"pop rdx",
"pop rcx",
// Recovers the actual symbol to jump to, and jump there will passing
// the return address of the current function
// frame to the callee.
"pop rbx",
"mov rax,[rspl",
"jmp rbx",
const Oxdeadbeefib4,
sym #ident
)

Code snippet 5: Trampoline generation code
Due to its nature, the function is written entirely in assembly and is composed of 5 steps:

1. Store on the stack the address of the hijacked function. Having the linker to easily identify
where it should resolve the symbol of the target without having to store this in a relocation.

14

Ludovic Mermod & Noé Terrier

2. Save the arguments registers. Those are callee-saved registers, hence the trampoline needs
to take care of restoring them after calling the hook.

3. Call the hook. It is interesting to note that since arguments registers where unmodified
since the entering the trampoline, they still hold the arguments passed to the hijacked
function and can thus be read by the hook.

4. Restore the arguments registers.

5. Get the address of the hijacked function from the stack (set in step 1) and jump there. This
means that the hijacked function will have the stack frame of the trampoline, with its return
address which is the one the program needs to go back to after running the target function.

The overall execution flow of this function is very similar to a function such as the one shown
in Code snippet 6 with tail-call optimization.

fn trampoline puts(str: *const i8) {
hook(str);
puts(str);

}

Code snippet 6: Simple trampoline function

The linker adds an extra module after the relocation one to rewrite the relocation of the target
functions to actually jump to the hook rather than the external library, and then update the
hook’s first mov instruction to hold the address of the hijacked function.

This implementation of hook is rather simple, allowing a single function to be targeted by a
hook and the hook must be hard coded in the linker itself. A more complete implementation
could instead look for the hooks in a new dedicated ELF section, and each hook could have
several “entrypoints”, with multiple mov rax {} instructions each followed by a jump to the
push rax one which would allow to have several functions rewritten to different entrypoints.

It is also interesting to note that implementing such hooks aligns well with the linker’s
actual purpose as, outside of the trampoline function, the new module replace the hijacked
functions’ relocations by relocations to the trampoline and rewriting the trampoline’s first
mov is equivalent to a relocation to the hijacked function.

6 State of the project

Currently, the project features the System V modules for handling basic x86 executables and
a full API to manipulate that chain. However, the existing modules are limited as they do not
handle all relocation types and support for thread-local storage is sparse.

The default System V modules provided by the framework cover successfully the following
types of ELF files: statically linked executables, position independent executables, dynamically
linked executables, compiled ¢ program using Musl’s libc, and even a build-modified version
of sqlite3 built without multithreading and libc-dependent libraries.

There are also several examples that use the framework to achieve various purposes
(Section 5). They were implemented without ever requiring modification of the design of the
framework, showing that the design choices give enough freedom to easily implement new
linker starting from the basic System V chain.

15

Ludovic Mermod & Noé Terrier

7 Future work

Although the design and main parts of the implementation are complete, there are still some
challenges to address before the System V modules can be considered fully working. The
two major ones are to complete the handling of thread-local storage (Section 4.4) and lazy
processing of jump slot relocations (Section 4.5).

Along with these major milestones, some other improvements could be added, such as:

 Improving stack creation to reuse the initial stack of the process instead of creating a new
one before jumping to the entrypoint:

+ Unloading the code of the linker and the objects before starting the program.

« Symbol hash table for fast symbol lookup

« Others relocations not implemented

8 References
[1] R. Pike, [Online]. Available: http://herpolhode.com/rob/utah2000.pdf

[2] A. G. Charly Castes, “Dynamic Linkers Are the Narrow Waist of Operating Systems,”
Oct. 2023. [Online]. Available: https://charlycst.github.io/papers/dyn-linkers.pdf

[3] C. Lattner and V. Adve, “The LLVM Compiler Framework and Infrastructure Tutorial,”
in LCPC'04 Mini Workshop on Compiler Research Infrastructures, West Lafayette, Indiana,
Sep. 2004. [Online]. Available: https://llvm.org/pubs/2004-09-22-LCPCLLVMTutorial
html

[4] T. Committee, “Tool Interface Standard (TIS) Executable and Linking Format (ELF)
Specification_1995” [Online]. Available: https://refspecs.linuxfoundation.org/elf/elf.pdf

[5] “OSDev Wiki” [Online]. Available: https://wiki.osdev.org/System_V_ABI

[6] M. G. J. H A J. M. M. HJ. Lu Michael Matz, “System V Application Binary
Interface AMD64 Architecture Processor Supplement (With LP64 and ILP32 Program-
ming Models)” [Online]. Available: https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/
artifacts/master/raw/x86-64-ABl/abi.pdf?job=build

[7] “Musl libc” [Online]. Available: https://musl.libc.org/

[8] fasterthanlime, “Making our own executable packer” [Online]. Available: https://
fasterthanli.me/series/making-our-own-executable-packer

[9] U. Drepper, “ELF Handling For Thread-Local Storage.” [Online]. Available: https://www.
akkadia.org/drepper/tls.pdf

[10] “Thread control block head structure” [Online]. Available: https://course.khoury.
northeastern.edu/cs5600f15/dmtcp/structtcbhead__t.html

16

http://herpolhode.com/rob/utah2000.pdf
https://charlycst.github.io/papers/dyn-linkers.pdf
https://llvm.org/pubs/2004-09-22-LCPCLLVMTutorial.html
https://llvm.org/pubs/2004-09-22-LCPCLLVMTutorial.html
https://refspecs.linuxfoundation.org/elf/elf.pdf
https://wiki.osdev.org/System_V_ABI
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/raw/x86-64-ABI/abi.pdf?job=build
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/raw/x86-64-ABI/abi.pdf?job=build
https://musl.libc.org/
https://fasterthanli.me/series/making-our-own-executable-packer
https://fasterthanli.me/series/making-our-own-executable-packer
https://www.akkadia.org/drepper/tls.pdf
https://www.akkadia.org/drepper/tls.pdf
https://course.khoury.northeastern.edu/cs5600f15/dmtcp/structtcbhead__t.html
https://course.khoury.northeastern.edu/cs5600f15/dmtcp/structtcbhead__t.html

	Abstract
	Motivation
	Background
	ELF
	ELF header
	Segments
	Sections

	System V ABI
	Linker workflow

	Fold Design
	Manifold
	Target selection

	System V Chain
	Chain overview
	Collector
	Loader
	Thread local storage
	Relocation
	Jump slot relocation

	Protect
	Start

	Case study
	Syscall filtering
	Inter-module communication
	Function hooks

	State of the project
	Future work
	References

